DR. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY, LONERE

Supplementary Winter Examination – 2023

Course: B. Tech. Branch: E&TC Engineering/Electronics Semester: VII

Subject Code & Name: BTEXPE703C CMOS Design

Max Marks: 60 Date: 6/1/2024 Duration: 2:00 to 5:00 PM

Instructions to the Students:

- 1. All the questions are compulsory.
- 2. The level of question/expected answer as per OBE or the Course Outcome (CO) on which the question is based is mentioned in () in front of the question.
- 3. Use of non-programmable scientific calculators is allowed.
- 4. Assume suitable data wherever necessary and mention it clearly.

	4. Assume suitable acta wherever necessary and mention it clearly.	(CO)	Marks
Q. 1	Solve Any Two of the following.		12
A)	Draw and explain transfer characteristics of CMOS inverter.	1	6
B)	Implement $Y = (A + B)$. CD function using static CMOS design style.	2	6
C)	Draw the schematic and layout for three input CMOS NOR gate, Use	2	6
	CMOS Lambda based design rules.		
Q.2	Solve Any Two of the following.		12
A)	Write a short note on CMOS scaling	1	6
B)	Explain leakage power in CMOS inverter. What are ways to reduce it?	1	6
C)	Implement 4:1 multiplexer using CMOS transmission gates.	2	6
Q. 3	Solve Any Two of the following.		12
A)	What are various Short Channel Effects? How to avoid them?	1	6
B)	Write electrical, logical effort, parasitic effort for four input NOR gate.	2	6
C)	Explain CMOS λ -based design rules in detail.	1	6
Q.4	Solve Any Two of the following.		12
A)	Implement JK Flip-Flop using Static CMOS design style.	2	6
B)	Explain dynamic CMOS logic. Compare it with static CMOS logic	2	6
C)	Explain all the parasitic capacitances of the MOSFET in detail	1	6
Q. 5	Solve Any Two of the following.		12
A)	Implement 2-bit magnitude comparator using static CMOS logic	1	6
B)	Implement half adder combinational circuit using static CMOS logic.	2	6
C)	Implement two input CMOS AND/NAND gate using Dual rail Domino	2	6
	logic		