DR. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY, LONERE

Winter Examination – 2022

Course: B. Tech. Branch: Electronics Engg. Semester: V

Subject Code & Name: Digital Signal Processing (BTEXC502)

Max Marks: 60

Date:31/01/2023

Duration: 3 Hr.

(Level/CO) Marks

Instructions to the Students:

- 1. All the questions are compulsory.
- 2. The level of question/expected answer as per OBE or the Course Outcome (CO) on which the question is based is mentioned in () in front of the question.
- 3. Use of non-programmable scientific calculators is allowed.
- 4. Assume suitable data wherever necessary and mention it clearly.

Q.1	Solve Any Two of the following.		12
A)	List out the advantages and drawbacks of Digital Systems over Analog	Remember	6
	Systems.		
B)	Determine the Nyquist rate corresponding to following signals	Evaluate	6
	1. $x(t) = 5sin(100\pi t) - 8cos(250\pi t) - 15sin(400\pi t)$		
	2. $x(t) = sinc(200\pi t) + sinc(400\pi t)$		
C)	Illustrate the sampling theorem along with concept of oversampling and under	Understand	6
	sampling.		
Q.2	Solve Any Two of the following. `		12
A)	Illustrate any three properties of N-point DFT.	Understand	6
B)	Evaluate the output of Discrete system represented with system input given	Evaluate	6
	as $x(n) = \{2, -1, 4, 8\}$ & system's impulse response $h(n) = \{2\}$ Use N-point		
	DFT & IDFT.		
C)	Determine 8-point DFT X[k], If $x(n) = \{3, 4, 6, 4, 3, 4, 6, 4\}$. Use 8-point DIT-	Evaluate	6
	FFT Radix-2 algorithm.		
Q. 3	Solve Any Two of the following.		12
A)	Evaluate the system transfer function $H(z)$ and impulse response $h(n)$ of the	Evaluate	6
	system represented with its difference equation as:		
	y(n) = x(n) + y(n-1) + 2y(n-2)		
B)	Evaluate the Z-transform of given signal $x(n) = \cos w_0 n * u(n)$.	Evaluate	6
C)	Determine Inverse Z-Transform of given Z-transform of signal:	Evaluate	6
	$X[z] = \frac{2z^2}{z^2 - 5z + 6} \qquad \text{ROC: } z < 2$		
	Use Partial Fraction Method.		

Q.4	Solve Any Two of the following.		12
A)	Digital IIR Butterworth Filter is to be designed with the following	Evaluate	6
	specifications using Impulse Invariance method:		
	$0.8 \le H(e^{jw}) \le 1: 0 \le w \le 0.2\pi$		
	$ H(e^{jw}) \le 0.2: 0.6\pi \le w \le \pi$		
	Assume Ts=1 sec		
	Determine:		
	1. Order of the Filter (N)		
	2. Cut-ff Frequency of the Filter (Ωc)		
B)	Relate IIR Filters with FIR Filters.	Remember	6
C)	A digital filter with 3 dB bandwidth of 0.25π is to be designed from the analog	Evaluate	6
	filter whose system function is:		
	$H(s) = \frac{\Omega_c}{s + \Omega_c}$		
	Use Bilinear Transformation and evaluate H(z).		
Q. 5	Solve Any Two of the following.		12
A)	Design Digital FIR LPF with following specifications:	Create	6
	$H(e^{jw}) = e^{-j3w} : \frac{-\pi}{2} \le w \le \frac{\pi}{2}$		
	$H(e^{jw}) = 0$: Otherwise		
	Use Rectangular window. Assume Filter length N=7.		
B)	For a Linear Phase FIR Filter represented with its difference equation:	Apply	6
	$y(n) = 2x(n) + \frac{2}{3}x(n-1) + \frac{4}{5}x(n-2) + \frac{4}{5}x(n-3) + \frac{2}{3}x(n-4) + 2x(n-5)$		
	Develop Direct form and Linear Phase realization structures of given system.		
C)	Illustrate the use of Multi-rate Digital Signal Processing in the following	Understand	6
	applications:		
	1. Implementation of a narrow-band Low Pass Filter		
	2. Filter banks		
	*** End ***	I	