DR. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY, LONERE

Supplementary Summer-2023

Course: B. Tech. Branch: Electronics Engineering Semester: V

Subject Code & Name: Digital System Design (BTEXOE505A)

Max Marks: 60 Date:19/08/2023 Duration: 3 Hr.

Instructions to the Students:

- 1. All the questions are compulsory.
- 2. The level of question/expected answer as per OBE or the Course Outcome (CO) on which the question is based is mentioned in () in front of the question.
- 3. Use of non-programmable scientific calculators is allowed.
- 4. Assume suitable data wherever necessary and mention it clearly.

	4. Assume suitable data wherever necessary and mention it clearly.		
		(Level/CO)	Marks
Q. 1	Solve/Answer Any Two of the following.		12
A)	What is VHDL? And what are its key features for hardware description?	CO1	6
B)	Compare i)concurrent and sequential statements in VHDL ii) Data objects and signal drivers in VHDL,	CO1,CO2	6
C)	Design an 8-to-1 multiplexer using combinational logic and write its VHDL code.	CO1,CO2	6
Q.2	Solve/Answer Any Two of the following.		12
A)	Explain Read-Only Memory (ROM), Programmable Logic Array (PLA), and Programmable Array Logic (PAL) devices	CO3	6
B)	Design a 4-bit adder circuit using basic logic gates (AND, OR, XOR, etc.) and write VHDL code.	CO1,CO2	6
C)	Design 4-bit SISO shift register and write VHDL code	CO3	6
Q. 3	Solve/Answer Any Two of the following.		12
A)	Explain the various data types in VHDL.	CO4	6
B)	Explain different modeling styles of VHDL with suitable examples	CO1	6
C)	Write a VHDL entity and Architecture for the following function. $F(x) = (a + b) (c + d)$. Also draw the relevant logic diagram.	CO2,CO4	6
Q.4	Solve/Answer Any Two of the following.		12
A)	Explain about Simulation and Synthesis processes in VHDL.	CO4	6
B)	Write a VHDL program for a 2 bit Magnitude Comparator using Data Flow model.	CO2,CO3	6
C)	What is VHDL? And Explain the following with syntax in VHDL File, signal, Variable	CO4	6
Q. 5	Solve/Answer Any Two of the following.		12
A)	Briefly explain the architecture of a Complex Programmable Logic Device	CO4	6
B)	Define FSM. Also Differentiate between Mealy and Moore machines in terms of their output generation and transition behavior	CO3	6
C)	Design 3:8 decoder and write VHDL code using structural modeling	CO1,CO2	6