DR. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY, LONERE.

Winter Examination – 2022

Course: - B. Tech. Branch: - Common for All branches Semester:- III

Subject Code & Name: BTBS301 Engineering Mathematics-III

Max. Marks: - 60 Date: - 09/03/2023 Duration: - 3-Hrs

Instructions to the Students:

- 1. All the questions are compulsory.
- 2. The level of question/expected answer as per OBE or the Course Outcome (CO) on which the question is based is mentioned in () in front of the question.
- 3. Use of non-programmable scientific calculators is allowed.
- 4. Assume suitable data wherever necessary and mention it clearly.

(Level/CO) Marks

Q. 1 Solve Any Three of the following.

- A) Find Laplace Transform of $e^{-3t} \sin^2 t$ L3/CO1
- B) Find Laplace Transform of $f(t) = \begin{cases} 1 & 0 < t < 1 \\ 0 & 1 < t < 2 \end{cases}$ where f(t) is periodic function of period 2.
- C) Evaluate using Laplace Transform.: $\int_0^\infty \frac{\cos 4t \cos 3t}{t} dt$ L3/CO1
 - **D)** Find Laplace Transform of $(1 + 2t 3t^2 + 4t^3)H(t 2)$ L3/CO1 **4**

Q2 Solve Any Three of the following.

- **A)** Find the inverse Laplace transformation of the function. $\log \left(1 + \frac{a^2}{s^2}\right)$ L3/CO2 **4**
- **B**) By using convolution theorem find $L^{-1}\left[\frac{s}{(s^2+4)(s^2+9)}\right]$ L3/CO2 **4**
- C) Find the inverse Laplace transformation of the function. $\frac{5s^2-15s-11}{(s+1)(s-2)^2}$ L3/CO2
- **D**) Solve using Laplace transformation

$$y'' + 3y' + 2y = t\delta(t - 1)$$
 for which $y(0) = y'(0) = 0$ L3/CO2

12

12

Q.3 Solve Any Three of the following.

(12)

A) Using Parseval's identity prove that
$$\int_0^\infty \frac{x^2}{(x^2+1)^2} dx = \frac{\pi}{4}$$

L3/CO3

4

B) Find the Fourier transform of

$$f(x) = \begin{cases} 1 - x^2, & |x| \le 1 \\ 0, & |x| > 1 \end{cases}$$

L3/CO3

4

C) Find the Fourier Sine transform e^{-ax} , a > 0

L3/CO3

4

D) Find the Fourier cosine transform of the function $f(y) = \begin{cases} cosy, & 0 < y < a \\ 0, & v > a \end{cases}$

L3/CO3

Q.4 Solve Any Three of the following.

(12)

A) Form the partial differential equation by eliminating arbitrary constants from

L3/CO4

4

$$(x-a)^2 + (y-b)^2 = z^2 \cot^2 \alpha$$

B) Solve the Partial differential equation x(y-z)p + y(z-x)q = z(x-y)

L3/CO4

4

C) Use the method of separation of variables to solve

$$\frac{\partial u}{\partial x} = 2 \frac{\partial u}{\partial t} + u$$

 $\frac{\partial u}{\partial x} = 2 \frac{\partial u}{\partial x} + u$ given that $u(x, 0) = 6e^{-3x}$

L3/CO4

4

D) A bar with insulated at its ends is initially at temperature 0°C throughout. The end x = 0 is kept at 0 °C for all times and the heat is suddenly applied so that $\frac{\partial u}{\partial x} = 10$ at x = t for all time. Find the temperature function u(x,t)L3/CO4 4

Q.5 Solve Any Three of the following.

(12)

A) Determine k such that the function $f(z) = e^x \cos y + i e^x \sin ky$ is analytic. L3/CO5

4

B) Show that $u = x^2 - y^2 - 2xy - 2x + 3y$ is a harmonic function and L3/CO5 4 hence determine the analytic function f(z) in terms of z.

C) Determine the pole of the function $f(z) = \frac{2Z-1}{Z(Z+1)(Z-3)}$ and also find the residue at each pole

& sum of all residues.

L3/CO5

4

D) Evaluate

L3/CO5

4

$$\oint_C \frac{\sin \pi z^2 + 2z}{(z-1)^2(z-2)} dz$$
, Where C is the circle $|z| = 4$