DR. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY, LONERE

Regular & Supplementary Winter Examination-2023

	Course: B. Tech.	Branch: Electronics Engineering	Semester: V	
	Subject Code & Nai	me: Electromagnetic Field Theory (B1	'EXPE504A)	
	Max Marks: 60	Date:08-01-24	Duration: 3 Hr.	
	Instructions to the St 1. All the question 2. The level of q which the question 3. Use of non-pr 4. Assume suitable	<i>tudents:</i> ons are compulsory. uestion/expected answer as per OBE or estion is based is mentioned in () in from rogrammable scientific calculators is all ble data wherever necessary and mention	the Course Outcome (CO) on t of the question. wed. 1 it clearly.	
) 1	Solve Any Two of th	ne following	(Level/CO)	Mai 11
A)	Given two points C (- (i) Spherical co-ordin (iii) the distance from	-3,2,1) and D (5, 20° ,- 70°) Find nates of C (ii) Cartesian co-ordination point C to D	Understand tes of D	6
B)	State and explain the Coulomb's law and the superposition principle Un applied for the static charge distribution.		inciple Understand, Remember	6
C)	Given the Flux dens	sity, $\overline{D} = \frac{2\cos\theta}{r^3}\overline{ar} + \frac{\sin\theta}{r^3}\overline{a\theta}$ C/m	3 Understand, Remember	6
	Evaluate Both the s	ides of divergence theorem for region	defined	
	by $1\leq r\leq 2$, $0\leq$	$\varphi \le \pi/2, 0 \le \theta \le \pi/2$		
• •	Solve Any Two of th	a following		1
A)			$0d\cos\theta$ Understand.	1
D)	Show that Potential using this obtain El	at a point due to Electric dipole is V ectric field Intensity.	$= \frac{1}{4\pi\epsilon r^2}$ Remember	
D)	Calculate E at M (3,	(-4,2) in free space caused by	Understand	U
	a) a charge $Q_1 = 2\mu Q_1$	C at $P_1(0,0,0)$		
	b) a charge $Q_2 = 3\mu 0$	C at $P_2(-1,2,3)$		
	c) Both Q_1 and Q_2			
C)	State and explain the form with their prope	e basic Maxwell's Equations in its point er significance.	and integral Understand, Remember	(
). 3	Solve Any Two of th	ne following.		12
A)	State and Explain continuity equation	Amperes circuital law. And der for time varying field.	ve current Understand, Remember	(
R)	Given the following	g values for $P_1, P_2, I_1 dI_1$ Calculate dH_2	Understand	6
	a) $P_1(0,0,2)$, P_2	$(4,2,0), 2\pi az \ \mu \text{Am}$		
	b) $P_1(0,2,0)$, P_2	$_{2}(4,2,0)$, $2\pi\overline{az}$ µAm		

C)	In the region where $\sigma = 0$, $\epsilon r = 2.5$, $\mu r = 10$. Determine whether follow- ing pairs of field satisfy Maxwell's equation, $\overline{E} = 2y \overline{ay}$, $\overline{H} = 5x \overline{ax}$	Understand, Remember	6		
Q.4	Solve Any Two of the following.		12		
A)	Define: Propagation constant, characteristic impedance, reflection coefficient and VSWR	Understand	6		
B)	Describe various types of transmission line	Understand, Remember	6		
C)	The Primary constants of a cable are	Understand	6		
	R= 80 Ω/km, L= 2 mh/km, G= 0.3 x 10^{-6} Ω ⁻¹ /km, C= 0.07mF/km				
	Calculate the characteristics constants of the line.				
Q. 5	Solve Any Two of the following.		12		
A)	A 15 GHz plane wave travelling in free space has amplitude of 20 V/m.	Understand	6		
-	Find Velocity of propagation, Wavelength, characteristic impedance of				
	medium, amplitude of H, propagation constant.				
B)	Explain Linear, circular & Elliptical polarization in details.	Understand	6		

C) For Poor conductor, prove that Understand, $\sigma \[\mu\]$ 1 $\sigma \[-1]$ $\Gamma \[-1]$ $\Gamma \[-1]$ $\Gamma \[-1]$ $\Gamma \[-1]$

6

$$\alpha = \frac{\sigma}{2} \sqrt{\frac{\mu}{\epsilon}}$$
 and $\beta = \omega \sqrt{\epsilon \mu} \left[1 + \frac{1}{8} \left(\frac{\sigma}{\omega \epsilon} \right)^2 + \cdots \right]$

*** End ***