	DR. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY	Y, LONERE		
Winter Examination – 2022				
	Course: B. Tech.Branch : Electronics EngineeringSet	emester : V		
	Subject Code & Name: Electromagnetic Field Theory (BTEXPE504A)			
	Max Marks: 60 Date: 08/02/2023 Du	ration: 3 Hr.		
	 Instructions to the Students: 1. All the questions are compulsory. 2. The level of question/expected answer as per OBE or the Course Out which the question is based is mentioned in () in front of the question 3. Use of non-programmable scientific calculators is allowed. 4. Assume suitable data wherever necessary and mention it clearly. 	tcome (CO) on n.	- 	
0.1		(Level/CO)	Marks	
Q. 1	Solve Any Two of the following.		12	
A)	Three field quantities are given as $\mathbf{A} = 2\mathbf{a}_{\mathbf{x}} + \mathbf{a}_{\mathbf{y}} - 3\mathbf{a}_{\mathbf{z}}$, $\mathbf{B} = \mathbf{a}_{\mathbf{y}} - \mathbf{a}_{\mathbf{z}}$,		6	
	$\mathbf{C} = 3\mathbf{a}_{\mathbf{x}} + 5\mathbf{a}_{\mathbf{y}} + 7\mathbf{a}_{\mathbf{z}}$. Determine			
	(i) $A-2 B+C$ (ii) $C-4 A+B$ (iii) $A \cdot C - B ^2$			
B)	Express the Following Points in Cartesian Coordinates		6	
	(i) $P(1, 60^0, 2)$ (ii) $Q(2, 60^0, -4)$ (ii) $R(4, \pi/2, \pi/6)$			
C)	State and Verify Divergence Theorem		6	
Q.2	Solve Any Two of the following.		12	
A)	If an Infinite surface Charge is uniformly distributed in XY plane with	Understand	6	
	charge density ρ_s then Evaluate electric field intensity at any point			
B)	Derive an current continuity equation for time varying field	Remember	6	
C)	Calculate E, at $M(3,-4,2)$ in free space caused by	Understand	6	
	a) a charge $Q_1=2\ \mu C$ at $P_1(0,0,0)$ a) a charge $Q_2=3\ \mu C$ at $P_1(-1,2,3)$ a) Both Q_1 and Q_2			
Q. 3	Solve Any Two of the following.		12	
A)	Explain In short (i) Biot savart's law (ii) Maxwell's Equation in final forms	Remember	6	
B)	A Telephone line has $R = 30\Omega/km$, L= 100mH/km, G = 0, C= 20 μ F/km. At f =1 kHz, Obtain	Understand	6	
	a) The characteristic impedance of the line			
	b) The propagation constant			
	c) The Phase velocity			
C)	State and Explain Ampere's Circuital Law with its Application.	Remember	6	

Q.4 Solve Any Two of the following.

 A) Select the values of 'k' so that following pair of field satisfies the Remember 6 Maxwell's equation in region. Where

a)
$$E = (kx - 100t)ay \frac{\nu}{m}$$

 $H = (x + 20t)az \frac{A}{m}$ (Take $\mu = 0.25 H/m, \epsilon = 0.01F/m$)
b) $D = 5ax - 2yay + kzaz \frac{\mu c}{m^2}$
 $B = 2ay mWb/m^2$ (Take $\mu = \mu_0, \epsilon = \epsilon_0$)

- **B**) What are the Applications and Types of Transmission Line? **Remember**
- C) Define: Propagation constant, characteristic impedance, reflection Remember 6
 coefficient and VSWR

Q. 5 Solve Any Two of the following.

State and explain Poynting theorem in detail in electromagnetic fields.	Remember	6
The Electric field Intensity associated with a plane travelling in a	Understand	6
perfect dielectric, non-magnetic medium is given by,		
$Ex(Z, t) = 10\cos(3\pi \times 10^8 t - 2\pi z)$		
Compute the wavelength, frequency, and velocity of propagation.		
Explain Circular & Elliptical polarization	Understand	6
	State and explain Poynting theorem in detail in electromagnetic fields. The Electric field Intensity associated with a plane travelling in a perfect dielectric, non-magnetic medium is given by, $Ex(Z,t) = 10\cos(3\pi \times 10^8 t - 2\pi z)$ Compute the wavelength, frequency, and velocity of propagation. Explain Circular & Elliptical polarization	State and explain Poynting theorem in detail in electromagnetic fields.RememberThe Electric field Intensity associated with a plane travelling in a perfect dielectric , non- magnetic medium is given by, $Ex(Z,t) = 10\cos(3\pi \times 10^8 t - 2\pi z)$ UnderstandCompute the wavelength, frequency, and velocity of propagation.UnderstandExplain Circular & Elliptical polarizationUnderstand

*** End ***

12

6

12