DR. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY, LONERE

Supplementary Summer Examination – 2023

	Course: B. Tech.Branch: Electronics EngineeringSemester: VSubject Code & Name: Electromagnetic Field Theory (BTEXPE504A)	
		ration: 3 Hr.
_	 Instructions to the Students: All the questions are compulsory. The level of question/expected answer as per OBE or the Course Ouwhich the question is based is mentioned in () in front of the question. Use of non-programmable scientific calculators is allowed. Assume suitable data wherever necessary and mention it clearly. 	on.
1		(Level/CO)
	Solve Any Two of the following. Given point P (-2, 6, 3) and vector $A = y \overline{ax} + (x + z)\overline{ay}$, Express P	Understand
)	and A in Cylindrical and spherical coordinates. Evaluate A at P in	Unuerstanu
	Cartesian, cylindrical, and spherical systems.	
)	Given $\overline{A} = 25 \overline{a\rho} + 12 \overline{a\phi} - 20 \overline{az}$ at (8,120°,5) find the vector	Understand
	component of \overline{A}	
	(i) Perpendicular to cylinder $\rho = 8$	
	(ii) tangent to the cylinder $\rho = 8$	
	(iii) tangent to the plane $\emptyset = 120^{\circ}$	
	(iv) a unit vector perpendicular to \overline{A} and also tangent to $\rho = 8$	
)	State and Verify Divergence Theorem	
2	Solve Any Two of the following.	
)	Derive an Expression for Electric Field Intensity at any point due to	Remember
	infinite Line charge with charge density ρl C/m	
)	A Line charge density $\rho l = 15nC/m$ is located in free space on the line	Understand
	y = 3, x =4, and point charge Q = 2 X 10^{-12} C located at origin.	
	Find \overline{E} due to	
	a) Line charge at $P_2(8, 9, 10)$ b) Point charge at $P_2(8, 9, 10)$	
)	What are the Applications and Types of Transmission Line?	Remember
3	Solve Any Two of the following.	
)	Given the following values for $P_1, P_2, I_1 dI_1$ Calculate dH_2	Understand
	a) $P_1(4,0,0)$, $P_2(0,3,0)$, $2\pi \overline{az} \mu Am$	

b) $P_1(4,-2,3)$, $P_2(1,3,2)$, $2\pi(0.6 \overline{ax} - 0.8 \overline{ay}) \mu Am$

B) Show that Magnetic Field Intensity at any point due to finite Understand
 6 conductor carrying current I placed along Z axis is

$$\overline{H} = \frac{I}{4\rho\pi} (\sin \alpha 2 - \sin \alpha 1) \,\overline{a}\varphi$$

Where $\alpha 2, \alpha 1$ are the Inclination of Upper end and Lower end of current carrying conductor.

C) A current at 0.4Amp is in az direction in the free space filament Understand 6 parallel to z axis and passing through point (2, -4, 0). Find magnitude of H at (0, 1, 0) if filament lies in the interval -∞< z <∞.

Q.4 Solve Any Two of the following.

A) In the region where $\sigma = 0$, $\epsilon r = 2.5$, $\mu r = 10$. Determine whether Understand 6 following pairs of field satisfy Maxwell's equation, $\overline{E} = 2y \,\overline{ay}$, $\overline{H} = 5x \,\overline{ax}$

12

12

- B) Define: Propagation constant, characteristic impedance, reflection Understand 6 coefficient and VSWR
- C) If an electric vector A is incident at a boundary between two different Understand 6 dielectric medium with permittivity $\epsilon r1$ and $\epsilon r2$.at an angle of incidence $\theta 1$ and Let vactor B refracted at an angle of refraction $\theta 2$. Then

prove that $\frac{\tan \theta 1}{\tan \theta 2} = \frac{\epsilon r 1}{\epsilon r 2}$.

Q. 5 Solve Any Two of the following.

A) For Poor conductor , prove thatUnderstand6

$$\alpha = \frac{\sigma}{2} \sqrt{\frac{\mu}{\epsilon}}$$
 and $\beta = \omega \sqrt{\epsilon \mu} \left[1 + \frac{1}{8} \left(\frac{\sigma}{\omega \epsilon} \right)^2 \right]$

- B) A 10 GHz plane wave travelling in free space has amplitude of 15 V/m. Understand 6
 Find Velocity of propagation, Wavelength, characteristic impedance of medium, amplitude of H, propagation constant.
- C) Explain In short (i) Biot savart's law (ii) Maxwell's Equation in final forms

*** End ***