		Winter Examination – 20)23			
	Course: B. Tech.	Branch: E&TC	Semester: III			
	Subject Code & Name BTEXC302& Electronic Devices & Circuits					
	Max Marks: 60	Date:11/03/2023	Duration: 2:00 To 5:00 PM			
	 Instructions to the Students: All the questions are compulsory. The level of question/expected answer as per OBE or the Course Outcome (CO) on which the question is based is mentioned in () in front of the question. Use of non-programmable scientific calculators is allowed. Assume suitable data wherever necessary and mention it clearly. 					
		· · · · · · · · · · · · · · · · · · ·	Level/(CO)) M		
Q. 1	Solve Any Two of the foll	owing.				
A)	Derive the relation betwe	en α & β with respect to BJT	C01	-		
B)	In the circuit shown below	w, for Rb=300KΩ and Rb=15	50KΩ calculate C03	,		
	R _B	$R_C = 2 \text{ k}\Omega$ $\beta = 100$ (Si transistor)				
C)	Draw neat diagram of RO	Coupled amplifier and expl	lain in detail. C03	,		
Q.2	Solve Any Two of the foll	owing.				
A)	Explain E-MOSFET in d	etail.	C03	;		
B)	What is CMOS inverter?	Explain its transfer characte	eristics. C01	-		
C)		rain current for the circuit sh	nown in Fig. C03			

	$V_{GS} = -6 \text{ V}$ $I_{DSS} = 3 \text{ mA}$		
Q. 3	Solve Any Two of the following.		12
A)	Explain class c power amplifier in detail.	C02	6
B)	Determine the a.c. load power for the circuit shown in fig	C03	6
	R_{1} R_{C} R_{1} R_{C} $R_{L} = 200 \Omega$ $R_{L} = 200 \Omega$		
C)	Derive Expression for Maximum Efficiency of Class B Power Amplifier.	C02	6
	Solve Any Two of the following.		12
Q.4			6
Q.4 A)		C04	v
		C04	6

Q. 5	Solve Any Two of the following.		12
A)	Draw a neat diagram of clapp oscillator & explain in detail.		6
B)	1 mH inductor is available. Choose the capacitor values in a Colpitts oscillator so that $f=1$ MHz and feedback factor equal to 0.25		6
C)	i)State Barkhausen criterion for sustained oscillation. ii)Differentiate oscillator from amplifier.	C04	6
	*** End ***		

The grid and the borders of the table will be hidden before final printing.