DR. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY, LONERE

Regular & Supplementary Winter Examination-2023

Course: B. Tech. Semester :III **Branch : Electronics Engineering/Electronics and Telecommunication Engineering/Electronics and Communication Engineering** Subject Code & Name: BTEXC302/BTETC302 and Electronic Devices and Circuits Max Marks: 60 Date:04-01-2024 **Duration: 3** Hr. Instructions to the Students: 1. All the questions are compulsory. 2. The level of question/expected answer as per OBE or the Course Outcome (CO) on which the question is based is mentioned in () in front of the question. 3. Use of non-programmable scientific calculators is allowed. 4. Assume suitable data wherever necessary and mention it clearly. (Level/CO) Marks Q.1 Solve Any Two of the following. 12 A) Draw a neat circuit diagram of CB connection. Define α. Find the expression 6 CO3 for collector current. B) Explain transistor as an amplifier in CE configuration. CO3 6

C) Determine V_{CB} in the transistor circuit shown in figure (a). The transistor if CO2/CO3 6 silicon and has $\beta = 150$.

Q.2 Solve Any Two of the following.

- A) With a neat diagram, explain the working principle of p-channel CO2/CO3 6
 D-MOSFET with different cases.
- B) Give the comparison of FET with MOSFET and BJT. CO3 6
- C) A JFET has a drain current of 5mA. If $I_{DSS} = 10$ mA and $V_{GS (off)} = -6V$, find CO3 6 the value of (i) V_{GS} and (ii) V_P .

12

Q. 3	Solve Any Two of the following.		12
A)	Discuss with neat diagram transformer coupled class A power amplifier and	CO2/CO4	6
	derive its maximum efficiency.		
B)	Prove that the maximum conversion efficiency of a Class B transformer	CO2/CO4	6
	coupled amplifier is 78.5%.		
C)	With a neat diagram explain push-pull class B power amplifier and derive its	CO1/CO4	6
	maximum efficiency.		
Q.4	Solve Any Two of the following.		12
A)	Explain voltage series feedback amplifier with a neat diagram. How the	CO4	6
	overall gain, input impedance, output impedance is affected in these amplifiers		
B)	Explain current series feedback amplifier with a neat diagram. How the	CO2/CO4	6
	input impedance, output impedance are affected in these amplifiers.		-
C)	State and explain Barkhausen criterion of oscillations.	CO4	6
Q. 5	Solve Any Two of the following.		12
A)	Draw and explain the Wein Bridge oscillator. Derive the expression for	CO2/CO4	6
	frequency of oscillation.		
B)	Draw and explain the Hartley oscillator. Derive the expression for frequency	CO2/CO4	6
	of oscillation.		
C)	Define voltage regulation. Explain series voltage regulator with a block	CO4	6
	diagram.		

*** End ***