	DR. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY	, LONERE	
	Winter Examination – 2022		
	Course: B. Tech. Branch: Electronics Engineering Set	mester: V	
	Subject Code & Name: BTEXOE505C Optimization Techniques		
	Max Marks: 60 Date: 14.02.2023 Dura	tion: 3 Hr.	
	 Instructions to the Students: All the questions are compulsory. The level of question/expected answer as per OBE or the Course Outcome (CO) on which the question is based is mentioned in () in front of the question. Use of non-programmable scientific calculators is allowed. Assume suitable data wherever necessary and mention it clearly. 		
Q. 1	Solve Any Two of the following.		12
A)	State any 4 applications of optimizations in engineering	(L1/CO1)	6
B)	Explain in brief Classification of Optimization Problems	(L1/CO2)	6
C)	Find the maximum of the function $f(X) = 2x1 + x2 + 10$ subject to $g(X) = x_1 + 2x_2^2 = 3$ using the Lagrange multiplier method.	(L1/CO1)	6
Q.2	Solve Any Two of the following.		12
A)	State and prove the Kuhn – Tucker necessary conditions.	(L2/CO2)	6
B)	Write a note on gradient vectors and write the situations that creates prob- lems in evaluation of the Gradient.	(L1/CO1)	6
C)	Write a note on convexity with neat diagram	(L1/CO1)	6
Q. 3	Solve Any Two of the following.		12
A)	Explain the S^2 (Simplex Search) method in detail along with its advantages.	(L2/CO2)	6
B)	Write a note on Symmetric Primal – Dual Relations and Dual simplex method.	(L2/CO1)	6
C)	Minimize $f(x) = (1 - x_1^2) + (2 - x_2^2)$ using simplex search calculations.	(L1/CO1)	6
Q.4	Solve Any Two of the following.		12
A)	What do you mean by dynamic programming. Write a note on multistage decision problem along with its types.	(L1/CO2)	6
B)	Explain the computational procedure in dynamic programming.	(L1/CO1)	6
C)	Explain in brief curse of Dimensionality in Dynamic Programming	(L2/CO1)	6
Q. 5	Solve Any Two of the following.		12
A)	Explain the concept of cutting plane method with diagram.	(L1/CO2)	6
B)	Explain the Gomory's Method for Mixed-Integer Programming Problems	(L2/CO1)	6
C)	Explain in brief types of Random Search Methods	(L1/CO1)	6